COMPARATIVE TOXICITY ASSESSMENT OF NUCLEAR POLYHEDROSIS VIRUS AND SPINOSAD AGAINST Spodoptera litura (FABRICIOUS) IN SEMI FIELD CONDITIONS

Muhammad Bilal Ayyub1,*, Ahmad Nawaz1*, Muhammad Dildar Gogi1, Muhammad Jalal Arif1 Luqman Amrao2 and Jam Nazeer Ahmad1

1Integrated Pest Management Laboratory, Department of Entomology, University of Agriculture Faisalabad, Pakistan; 2Virology Laboratory, Department of Plant Pathology, University of Agriculture Faisalabad, Pakistan

*Corresponding author’s e-mail: mbilalayyub@gmail.com; Ahmad.nawaz1793@uaf.edu.pk

Spodoptera litura Fabricius (Noctuidae; Lepidoptera) is most damaging insect pest of various crops. Entomopathogens have potential to manage insect pests by minimizing resistance and reducing health hazards associated with synthetic toxic chemicals. The Nuclear polyhedrosis virus isolate of S. litura (V-SpltNPV) was isolated from infected larvae and presence of viral occlusion bodies were confirmed using an inverted microscope. Laboratory as well as greenhouse experiment was performed to evaluate the pathogenicity of V-SpltNPV. For laboratory studies, 2nd, 3rd and 4th instar larvae of S. litura were exposed to various concentrations (1×10⁸, 1×10⁷, 1×10⁶, 1×10⁵ and 1×10⁴ OBs/ml) of V-SpltNPV. The results revealed that highest V-SpltNPV concentration (1×10⁸ OBs/ml) caused 88.08% mean mortality while lower concentration (1×10⁶ OBs/ml) of V-SpltNPV resulted in lower mean mortality (58.75%) of 2nd instar larvae of S. litura. Larval mortality was enhanced with increase in concentration of V-SpltNPV and mortality reduced with increase in age of S. litura larvae. Around 65.52% mean mortality of 4th instar was recorded against 1×10⁶ OBs/ml which was reduced to 36.72% against 1×10⁴ OBs/ml of V-SpltNPV. In greenhouse experiment a combined application of spinosad with V-SpltNPV (1×10⁴ OBs/ml) caused 92.98% mortality of S. litura while individual application of V-SpltNPV (1×10⁸ OBs/ml) resulted 39.65% mean mortality of 3rd instar larvae. Similarly, individual exposure of spinosad caused around 42% mean mortality of 3rd instar larva under semi-field conditions. The native isolate V-SpltNPV have potential to be used in integrated manner with other IPM tactics to significantly reduce the use of the insecticides.

Keywords: Spodoptera litura, nuclearpolyhedrosis virus, spinosad, occlusion bodies. Entomopathogens.

INTRODUCTION

The Spodoptera litura (Fabricius) causes severe damage to important crops like cotton, tobacco, groundnut, soybean, and vegetables (Qin et al., 2004). It is commonly known as tobacco caterpillar and found in South Asian countries especially Pakistan and India (Kranthi et al., 2002; Ghaffar et al., 2002). It is also known as armyworm and can cause 26–100% yield reduction (Dhir et al., 1992). In Pakistan, S. litura can be found on the cotton crop at the beginning of the cotton season (Saleem et al., 2016). Chemical insecticides are the most commonly used tool for the management of S. litura. It is estimated that about thirty insecticides from various groups are applied to manage S. litura in Pakistan (Saleem et al., 2008). This indiscriminate and unselective use of insecticides along with the poor practice of insecticide application without the pest scouting are the important factors for the resistance development in S. litura (Ahmad and Arif, 2010). The S. litura has gained resistance against various insecticide groups such as synthetic pyrethroids, carbamates and organophosphates (Ahmad et al., 2007).

The negative effect of chemical insecticides on environment, human health (Nawaz et al., 2014) and resistance development in insects are key reasons to adopt alternative methods of pest management (O’Callaghan and Brown, 2009). Different microbial pesticides are being used all over the world to manage various insect pests without affecting environment (Islam and Omar, 2012). Nuclear polyhedrosis viruses (NPVs) belong to the Baculoviridae family and are the pathogens which infect many insect pests and other arthropods. They are used as biopesticides against targeted insect pests (Deng et al., 2007). They have been deployed as insecticides since more than 75 years. NPVs are rod-shaped double-stranded DNA viruses which infect arthropods (Jehle et al., 2006). Many lepidopteran pests including S. Litura (Fabricius) has shown susceptibility to NPV isolates (Kumar et al., 2011; Laarif et al., 2011; Khattab, 2013; Ahmad et al., 2018). NPVs can persist in the environment especially in soil for long time. (Berling et al., 2009). Spinosad is a biobased insecticide which is very effective against target insect pests. It is known as low risk insecticide and considered safe for non-target organisms. NPVs and spinosad when used in combination, gives effective
results against the cotton leaf worm (El-Helaly and El-Bendary, 2013; Ayyub et al., 2019). Efficacy of SpilNPV increased by mixing with spinosad against S. littoralis larvae (Khattab, 2007). About 30% increase in control of S. frugiperda was observed by using mixtures of spinosad and SpfMNPV (Mendez et al., 2002). The current research work also indicated the efficacy of indigenous isolate of NPV with spinosad under laboratory and semi-field conditions and could be the base of microbial insecticide development in Pakistan.

MATERIALS AND METHODS

Insect population and insect virus: Larvae of Spodoptera litura were collected from various cotton fields of district Faisalabad, Pakistan and brought into the laboratory for rearing in controlled conditions. Larvae of S. litura were fed on artificial diet (Haq et al., 2015) in controlled environment (26 ± 2°C, 70 ± 5 RH, 12:12 h light: dark photoperiod) in IPM laboratory, Department of Entomology, University of Agriculture, Faisalabad, Pakistan. Newly hatched larvae were transferred individually to plastic vials (3.2cm height, 3cm diameter) containing a small piece of artificial diet. The NPV infected isolates (38) of S. litura larvae were collected from different districts (Faisalabad, Multan, Vehari and Bahawalpur) of Punjab province (Pakistan) (Fig.1).

Figure 1. Map showing sampling districts of Punjab, Pakistan (Vehari, Multan, Faisalabad and Bahawalpur).

Collected isolates showing symptoms brought to the laboratory and observed to confirm the presence of NPV by inverted microscope with Giemsa staining (Yaman et al., 2001). Two screening tests were conducted to evaluate the pathogenicity of these isolates and most virulent strain isolate was selected for further experimentation (Ayyub et al., 2019). The name was given to the isolate with reference to the location from which it was collected (V= Vehari, SpilNPV= S. litura NPV). The virus propagation was carried out in vivo as described (Hunter-Fujita et al., 1998; Monoburullah and Nagata 2000). Purified occlusion bodies (OBs/ml) were counted five times using hemocytometer under inverted microscope. A dilution of various concentrations (1x 10^6-1x10^8 OBs/ml) of V-SplNPV were prepared in distilled water from stock suspension (Cory and Myers, 2003). The selected isolate V-SplNPV was used for mass culturing and greenhouse experiments.

Leaf disc bioassay: The S. litura larvae were obtained from laboratory rearing colony. Cotton leaves of 3 cm diameter were cut and placed in the plastic container (7cm height and 3cm in diameter). Various concentrations (1x 10^6-8 OBs/ml) were prepared and 5-10 µl viral concentration was applied on leaf discs with a micropipette. Control treatment were applied using only distilled water. Newly molted 30 larvae of 2nd, 3rd and 4th instar were placed in a treated container and allowed to feed on contaminated leaf discs. After 24h, larvae were shifted on fresh leaves. Fresh leaves were provided daily until pupation. All plastic containers were placed in a growth chamber with controlled conditions (25±2°C, 70±5% R.H and 14:10 (D:L) photoperiod). Mortality data was recorded after every 48h. All experiments were replicated three times.

Greenhouse experiment with NPV and spinosad: The experiment was performed in green house by using potted cotton plants of the same age (50 days). Three different concentrations (1x10^6-8 OBs/ml) of V-SplNPV were used for bioassay. Spinosad (Tracer 240 SC, Dow AgroSciences) was used with three V-SplNPV concentrations for combined treatment and also evaluated individually as well. For the greenhouse experiment, 1 ml of virus concentration was thoroughly mixed with 19 ml distilled water to make 20 ml (calibrated) final volume. The recommended concentration of spinosad (1%) was sprayed on potted cotton plants for individual toxicity assessment. The combined application of spinosad with various concentrations (1x10^6-8 OBs/ml) of NPV comprised of 20ml solution which was sprayed along with 0.1% Tween-80 as an adjuvant. Twenty larvae of 3rd instar of S. litura were released separately on each potted cotton plant with the camel hair brush. Cotton plants were covered with 0.5 mm² meshed mosquito net to avoid larval escape. The concentrations were sprayed on cotton plants with a hand sprayer. Mortality was observed daily until pupation.

Statistical analysis: Corrected mortalities were calculated by Abbott’s formula (1925) and data were analyzed by using Statistica 8.1 software and means were separated by Tukey’s HSD test at α = 5% (Sokal and Rohlf, 1995).
RESULTS

The bioassay was conducted against 2nd, 3rd, and 4th instar larvae of *S. litura*. The comparison of mean mortalities of tested larval instars (Fig. 2) showed that *S. litura* larvae were adversely affected when exposed to various concentrations of V-SpltNPV (1×10^6, 1×10^7, 1×10^8, 1×10^9 and 1×10^10 OBs/ml). The mean mortality ranging from 88.08%-36.78% of tested larval instars were recorded at the end of experiment. The mortality of tested larvae was dose depended as higher mean mortalities were observed for 2nd instar larvae when compared to 3rd and 4th instar larvae.

![Figure 2. Percentage mean mortality of different larval instars of *S. litura* against various concentrations applied on cotton leaves in laboratory.](image)

The concentration 1×10^6 OBs/ml (T1) caused 88.08% mean mortality of 2nd instar larvae which was reduced to 80.21% for 3rd instar larvae while 65.52% mean mortality of 4th instar larvae was noticed on same concentration. After application of 1×10^7 OBs/ml concentration (T2) 76.32% mean mortality of 2nd instar larvae was recorded whereas 70.89% and 59.77% mean mortality of 3rd and 4th instar larvae was observed, respectively. Reduced mortality was noticed after application of lower concentrations. When the concentrations of 1×10^6 OBs/ml (T3) was applied 70.21%, 65.11% and 51.42% mean mortalities were observed against 2nd, 3rd and 4th instar larvae of *S. litura*, respectively. Mean mortalities of 60.76% of 2nd instar, 51.19% of 3rd instar and 44.53% of 4th instar larvae were recorded against the concentration of 1×10^8 OBs/ml (T4). The 1×10^4 OBs/ml concentration (T5) resulted 47.65% mean mortality which was reduced to 36.78% for 4th instar larvae of *S. litura*.

Greenhouse experiment results showed that combination of spinosad with V-SpltNPV concentrations was more effective as compared to alone application of V-SpltNPV (Fig. 3). Alone application of V-SpltNPV with highest concentration (1×10^8 OBs/ml) resulted 39.65% mean mortality of 3rd instar larvae of *S. litura* when released on cotton plant. Whereas combined application of same concentration (1×10^8 OBs/ml) of V-SpltNPV caused 92.98% mean mortality which was much higher than the mortality caused by individual applications of V-SpltNPV (39.65%) and spinosad (42.10%). The minimum concentration of V-SpltNPV (1×10^6 OBs/ml) when combined with spinosad was even effective by causing 61.4% followed by 75.43% (by1×10^7 OBs/ml) mean mortality of 3rd instar larvae of *S. litura*. The individual application of both concentrations showed less than 50% mean mortality than in combination with spinosad.

![Figure 3. Percentage mean mortality of 3rd instar larvae against various concentrations sprayed on cotton plants in greenhouse.](image)

DISCUSSION

V-SpltNPV isolate was effective to control the larval population of *S. litura*. Older larvae were more resistant to the concentration of V-SpltNPV due to physiological changes related to pupation, and resistance against the infection process on the later larval stage. The increase in larval age actually decreases the efficacy of the V-SpltNPV. The mortality of 2nd instar larvae was 88.08% while that of 4th instar was 65.52%. Such observations were agreed with the
results of Kumar et al. (2011) who revealed that decreasing trend of mortality was observed for second to third instar larvae of *S. litura* due to SpNPV. The physiological changes associated with pupation might not allow infection at the lateral developmental stage as the older larvae (10 days) which were found to be more resistant to SINPV. The possibility of biovirus not getting sufficient time to replicate or kill the larvae may not be ruled out. Such suggestion gets support from the findings of Teakle et al. (1986). In addition, Tuan et al. (1998) and Kamala (1992) also observed significant differences in LC50 values among different larval instars of *S. litura* and *Trichoplusia ni* (Milks et al., 1998).

The results may differ with previous findings because it has been also reported that the variation in the lethal activity of NPV isolates may depend on the insect population (Erlandson, 2009). In addition, the dose depended mean mortalities of tested *S. litura* are in agreement to the results of Pritha et al. (2018) who reported 30.55% to 86.11% mean mortalities of 2nd instar larvae of *S. litura* when exposed to different concentrations of SINPV. There are number of studies to support the stated results (Tuan et al., 1998; Kamala, 1992; Milks et al., 1998; Trang and chaudhari, 2002; Kumari and Singh, 2002).

The combination of spinosad with entomopathogens proved to be suitable because spinosad has no antiviral, antifungal or antibacterial activity (Bret et al., 1997). Spinosad has been distinguished as a biopesticide, as spinosyns are produced by fermentation of soil bacterium *actinomycete* (Copping and Menn, 2000). Spinosad has insecticidal properties that differentiate it from other entomopathogenic biopesticides (Salgado, 1998). Bret et al. (1997) noted that the combination of spinosad with SINPV resulted in better control for the management of *S. furgiperda* population. The individual application of spinosad showed 42.1% mean mortality and 39.65% mean mortality was recoded at highest concentration of V-SplNPV. On the other hand, 92% mean mortality was recorded in combined application of Spinosad and V-SplNPV. Such findings are in agreement with findings of El-Helaly and El-bendary (2013) who observed maximum larval mortality (55%) of *S. littoralis* against the combined treatment of SINPV and spinosad. While alone treatment of SINPV caused 20.11% mortality and spinosad gave 26.66% mortality of *S. littoralis*. The highest mortality rate may be due to the additive/synergistic impact or the compatibility of Spinosad and V-SplNPV. The additive effects of spinosad and SpNPV combination was also reported in previous findings of Mendez et al. (2002) against larvae of *S. furgiperda* as combined treatment caused higher mortality when compared with the alone application. Similarly, 40% more control of *S. litura* was reported when exposed to the combined formulation of SplNPV and azadirachtin (Cook et al., 1996).

The combined application of AgMNPV and spinosad also increased the mortality of pickleworms larvae up to 78% (Jackson et al., 2014). While significantly lower mortality of 32% and 24% was observed against AgMNPV and spinosad, respectively when applied alone. Overall, it is evident that spinosad is compatible with NPV based products and can be effective if applied carefully.

NPV also proved to be compatible with other important pest management compounds. Nathan and Kalavai (2005) reported maximum mortality (92.7%) with azadirachtin (AZA) and NPV against *S. litura* larvae but less mortality was recorded when treated alone with NPV (28.5%) and AZA (36.3%). Similarly, Shaurub et al. (2014) suggested that the mixture of NPV with AZA enhance larval mortality of *S. littoralis* significantly as compared to individual treatments.

Conclusion: The results exhibited dose and stage dependent mean mortality of target pest. The native isolate V-SplNPV showed 88.08% mean mortality of 2nd instar *S. litura* in laboratory. V-SplNPV is also compatible with spinosad causing 92.98% mortality of 3rd instar *S. litura* in semi-natural conditions. Overall, the integration of NPV with low risk insecticides can be very effective for the management of insect pests of economic importance.

Acknowledgment: The author highly acknowledged Higher Education Commission Islamabad, Pakistan for funding the research grant for current research work.

REFERENCES

Integrated efficacy of NPV with spinosad against Spodopteralitura (Fab.)

O’Callaghan, M. and M. Brownbridge. 2009. Environmental impacts of microbial control agents used for control of invasive pests. In: Hajek, A.E., T. Glare and M. O’Callaghan (Eds.). Use of Microbes for Control and

[Received 21 June 2019: Accepted 30 Dec-2019 Published 8 Feb. 2020]