STUDIES ON PREPARATION OF READY TO SERVE MANDARIN (Citrus reticulata) DIET DRINK

Mubeen Ahmeda, Asif Ahmadb, Zia Ahmad Chatha a and Syed Muhammad Raihan Dilshad c

aNational Institute of Food Science & Technology, University of Agriculture Faisalabad
bDepartment of Food Technology, PMAS, Arid Agriculture University Rawalpindi
cDepartment of Farm Machinery & Power, University of Agriculture, Faisalabad

Citrus fruits are considered to be the rich source of ascorbic acid, pectin, carotenes, citric acid, and minerals like calcium and phosphorous. Consumption of high sugar drinks lead to various diseases such as diabetes, obesity and dental caries. This study aimed at formulation of diet beverage with various combinations of intense sweeteners and was compared with control beverage containing sucrose. Physiochemical changes in beverage were also investigated at various storage intervals. A gradual increase in reducing sugar level was observed in all treated samples with the passage of time, while non-reducing sugars decreased gradually during storage studies. The declining trend in ascorbic acid contents of mandarin drink was increased as a function of storage. Sensory results showed that there was declining trend in the scores obtained for color. The overall results showed that combination of different sweeteners gave best results for taste than without combinations.

Keywords: Citrus, diet drink, storage, physiochemical properties

INTRODUCTION

Mandarin (Citrus reticulata) is one of the most popular citrus fruit having attractive bright colour, appealing taste and flavor. In Pakistan, approximately 60 per cent of total citrus production is comprised of mandarin being popularly known as 'Kinnow'. The composition of citrus fruit juice is beneficial with respect to its mineral and ascorbic acid contents (Fladae et al., 2003). There is a great potential to use this fruit in value added products such as diet drinks. These types of citrus drinks are probably the most recognized and globally accepted fruit drinks (Nchez-moreno et al., 2003; Gorinstein et al., 2004). Alternative sweeteners can avoid problems with dental decay and other health risks associated with the excessive consumption of caloric sweeteners, such as sucrose (Cardello and Damasio, 1997). In Pakistan use of artificial sweeteners is limited but being economical, it is helpful to control obesity and other potential diseases. A variety of artificial sweeteners are available in the market like, aspartame, cyclamate, sucralose, saccharin, and acesulfame-K (Potassium salt of Acesulfame) etc. These are the non-nutritive sweeteners which are not metabolized by the body and do not contribute any energy or calories to the diet. The use of low-calorie sweeteners could improve dietary quality if consumers used energy savings for the consumption of nutrient dense foods (ADA, 2004). Leth et al., (2007) reported that use of sweeteners like for acesulfame-K, aspartame and saccharin in Danish society is much lower than the acceptable daily intake (ADI). A recent analysis (Sigman-Grant and Hsieh, 2005) of data from national diet surveys indicates that American adults who use reduced-sugar products have better diets than those who use the full-sugar versions of the same foods and beverages. Extensive scientific research has demonstrated the safety of the low-calorie sweeteners and is currently approved for use in foods in the United States. (Kroger et al., 2006). More recently safety of aspartame was reconfirmed by European Food Safety Authority in First European conference on aspartame (Renwick, and Nordmann, 2007)

In developed countries such sweeteners are being utilized for certain preparations to reduce the calories but in Pakistan their use is limited. Keeping in view all these facts, the project was designed to replace sugar with non-nutritive sweeteners completely to prepare ready to serve Mandarin diet drink. Thus, this study was aimed at selection of suitable sweetener for diet drink preparation that can replace sucrose partly or wholly. Furthermore, the influence of sweeteners alone and in blends was evaluated on the basis of sensory and physiochemical characteristics of diet drink.

MATERIALS AND METHODS

Fully ripened, mature, fresh and sound mandarin fruit were purchased from the local market and the materials such as sucrose, cyclamate, aspartame and acesulfame-K (potassium salt of acesulfame i.e. an intense sweetener) were also purchased from local market. Fruit were washed in tap water and then were peeled and divided into halves. Fruit juice was extracted in a rose head citrus juice extractor. After juice extraction, raw juice was heated at 96°C for two minute to inactivate enzymes. Following the heating
Ahmed, Ahmad, Chatha and Dilshad

process, the juice rapidly was cool down to room
temperature, was filtered through 8-folded cheese cloth
to eliminate particulates and then was blended in high
speed blender along with other ingredients as shown in
Table 1. Fifteen beverage treatments combination
were formulated with sucrose, cyclamate, aspartame
and acesulfame_k. The drink prepared with 100%
sucrose was used as a control. The detail of treatment
is depicted in Table 2. The prepared beverage was
kept in 250 ml glass bottles. After bottling, all juice
samples were again heated at 96°C for 20 min. Then
samples were cooled with tap water and were stored at
4°C. Treated drink samples were evaluated at 0, 10,
20, and 30 days of storage for physiochemical analysis
and sensory evaluation.

Table 1. Formulation of diet citrus beverage

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Concentration (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juice/Pulp</td>
<td>15%</td>
</tr>
<tr>
<td>Water</td>
<td>80-85%</td>
</tr>
<tr>
<td>Stabilizer/CMC</td>
<td>0.4%</td>
</tr>
<tr>
<td>Citric acid</td>
<td>0.15%</td>
</tr>
<tr>
<td>Na-Benzoate</td>
<td>0.1%</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>0.03%</td>
</tr>
<tr>
<td>Flavor</td>
<td>0.05%</td>
</tr>
<tr>
<td>Color</td>
<td>0.014%</td>
</tr>
<tr>
<td>Sweeteners</td>
<td>As mentioned in treatments table</td>
</tr>
</tbody>
</table>

Physiochemical Analysis

The total soluble solids in the samples were directly
recorded by Abbee’s stage refractometer (Model RL
No. 1373, USA) and the results were expressed as per
cent soluble solids (*Brix) as describe by (Rangana,
1991). Titratble acidity was determined by AOAC
(2000) methods and expressed in terms of percentage
citric acid. Product pH was measured using a pH meter
(Model HI 9020 Microprocessor, USA), by the method
given by Ruck (1963). The pH meter was standardized
by using buffers of pH 7.00 and 4.00 prior to recording
pH of the samples.

Brix/acid ratio was calculated by dividing the brix of the
drink with the percent acidity. Reducing and non-
reducing sugars in the drink were determined by Lane
and Eynon method as described by Ruck (1963). The
Ascorbic acid was determined by using spectrophotometer according to the method of Ruck
(1963) by using 2, 6 dichlorophenol indophenol dye.

Sensory evaluation

Standard sensory evaluation procedures were followed
to perform descriptive analysis; panelists were trained
using repeated round table and individual evaluations
of trial formulations of the control and diet beverages
samples. Hedonic scale method as described by
Larmond (1987) was used for the organoleptic
evaluation of drink for color, flavor and taste by a panel
of six judges at 0,15, 30, 45 and 60 days storage
period.

Table 2. Combinations of treatments used in Juice
formulation

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>Sugar (%)</th>
<th>Cyclamate (%)</th>
<th>Aspartame (%)</th>
<th>Acesulfame-k (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T1</td>
<td>0</td>
<td>75</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>T5</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>T6</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>T7</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>T8</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>T9</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>T10</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T11</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>T12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>T13</td>
<td>0</td>
<td>50</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>T14</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>T15</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

Statistical analysis

Statistical analyses of data were done by using
ANOVA on all experimental groups with three
replicates each. The experimental groups were then
separated statistically by using Duncan’s new multiple
range tests, as described by Steel et al., (1997).

RESULTS AND DISCUSSION

Total soluble solids (TSS)

The data on total soluble solids (TSS) for all treatments
has been presented in Table 3. There was a marginal
decrease in TSS was observed in all treatments as
compared to control. Interaction between storage time
and treatments was found non-significant. Maximum
total soluble solids were found in control samples (T0)
that was formulated with sucrose (100%) whereas
minimum TSS was found in T7 that was formulated with
combination of aspartame (75%) and acesulfame-K
(25%). During storage a slight increase in TSS was
observed in all samples. The increase in TSS might be
due to the formation of pectic substances from
protopectin and mono saccharides from disaccharides
i.e. degradation of sucrose into glucose and fructose.
Similar results have been reported by Sarolia and
Mukherjee (2002) in their studies on lime juice; These results are also in connection with previous studies of Kaunjoso and Luh (1967) while studying on the canning and storage of oranges and in canned peaches.

pH

The pH has great importance to maintain shelf stability; pH can also influence the flavor and processing requirements of the beverage. The data about pH (Table 3) indicated that there is a variation in control and treated samples. Highest pH was observed in T7 while lowest was experienced in T4 (cyclamate 75% and acesulfame-K 25%). Storage intervals also influenced the pH of the beverage. A decline in pH towards acidic region was noticed as the storage of beverage increased. However, this decline in pH was non significant at 45 day and 60 day interval. This decrease in pH was attributed to formation of acidic compounds by degradation of reducing sugars, as discussed by Zia (1987). Similar trend of decreasing pH was also reported by Saleem (1980).

Acidity

Acidity is also an important attribute because tartness is a major factor in the acceptability of kinnow drink. Acid gives the characteristic sourness to the product. Citric acid is the major acid in kinnow juice that enhance the characteristic flavor of kinnow drink. The data regarding acidity in different treatments of ready to serve kinnow diet drink is presented in Table 3. Data showed that treated sample differ from control for the parameter of acidity. Highest acidity was recorded in T11 (aspartame 100%) while lowest was observed in T7. Highest acidity in aspartame treated sample was due to acidic nature of aspartame. There was gradual increase in acidity in all treatments during storage upto 60 days. However non significant variation in acidity was observed at storage interval of 45 and 60 day. This increase in acidity was attributed to the degradation of sugars into carboxyl acids. Similar trend was also observed by the Saito et al. (1974) during studies on fruit juices.

Brix acid ratio

Brix acid ratio is a best indicator for measuring relative sweeteners or tartness of the product. The higher the brix in relation to acid contents of the drink then it means higher will be the ratio of sugars and sweeter the taste. Similarly lower the brix in relation to acidity of the drink, the lower the ratio of sugars and product will be sour in taste. Statistical analysis indicated that the results are highly significant for storage and treatment and their interactions are non-significant. Higher brix acid ratio was observed in control samples due to presence of sucrose that gives higher brix to drink. Brix acid ratio was found nonsignificant for treatment T1 to T6. Lowest brix acid ratio was observed in T11. This showed a little bit more sourness in samples treated with aspartame.

Reducing sugars

For reducing sugars there appeared a significant variation between control and treated samples (Table 3). However, all treated samples varied nonsignificantly with each other. Reducing sugar increased with increase in storage time and significant variation exist at all storage intervals (Table 4). This significant increase in reducing sugars during storage intervals might be due to inversion process of sucrose to glucose and fructose by the acid of the diet drink. Similar observations were also reported by Babsky et al. (1986), and Pruthi et al. (1984) that non reducing sugars of drinks is converted in to reducing sugars during storage.

Nonreducing sugars

The data regarding non-reducing sugars (Table3) revealed that treated samples differed significantly from control samples. However, for this parameter all treated samples differed nonsignificantly with each other. As concerned with storage, a slight decline in reducing sugar was experienced at all storage intervals. However this decline in non reducing sugar was slow in initial storage and found non significant at 0 day and 15 day storage. For the rest of intervals these changes were significant with each other. Such decline in non-reducing sugars was attributed to its conversion into reducing sugars during storage. A similar decline in non reducing sugar was observed by Sandi et al., (2004), during storage of drinks.

Ascorbic acid

Marginal differences in ascorbic acid contents were observed in various treatments. Treated samples also differed from control samples with respect to ascorbic acid contents (Table 3). Statistical Analysis showed that the results are highly significant for storage period. Ascorbic acid contents decreased significantly at all storage intervals. These losses of ascorbic acid were attributed to the effect of processing, storage time and exposure to light. The degradation of ascorbic acid in juice or drink may follow aerobic and an-aerobic pathways (Moshonas and shaw, 1989). Similar decreasing trend for ascorbic acid contents in different fruit beverages were also reported by the Ranote and Bains (1982), Robertson and Samaniego (1986).
Table 3. Effect of treatments on physiochemical properties of diet beverage

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>Physiochemical parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSS</td>
</tr>
<tr>
<td>T₀</td>
<td>18.8 a</td>
</tr>
<tr>
<td>T₁</td>
<td>2.00 bc</td>
</tr>
<tr>
<td>T₂</td>
<td>2.10 b</td>
</tr>
<tr>
<td>T₃</td>
<td>2.00 bc</td>
</tr>
<tr>
<td>T₄</td>
<td>2.17 b</td>
</tr>
<tr>
<td>T₅</td>
<td>1.97 bc</td>
</tr>
<tr>
<td>T₆</td>
<td>1.98 bc</td>
</tr>
<tr>
<td>T₇</td>
<td>1.80 c</td>
</tr>
<tr>
<td>T₈</td>
<td>2.12 b</td>
</tr>
<tr>
<td>T₉</td>
<td>2.08 b</td>
</tr>
<tr>
<td>T₁₀</td>
<td>2.04 bc</td>
</tr>
<tr>
<td>T₁₁</td>
<td>2.12 b</td>
</tr>
<tr>
<td>T₁₂</td>
<td>2.09 b</td>
</tr>
<tr>
<td>T₁₃</td>
<td>2.00 bc</td>
</tr>
<tr>
<td>T₁₄</td>
<td>1.94 bc</td>
</tr>
<tr>
<td>T₁₅</td>
<td>2.04 bc</td>
</tr>
</tbody>
</table>

TSS (Total soluble solids); B/A (Brix acid ratio); RS (Reducing sugars); NRS (Non reducing sugars); AA (Ascorbic acid)

Means carrying similar letters in a column do not differ significantly (p<0.05)

Table 4. Effect of storage on physiochemical properties of diet beverage

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0 day</th>
<th>15 day</th>
<th>30 day</th>
<th>45 day</th>
<th>60 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>2.93 c</td>
<td>3.02 bc</td>
<td>3.07 b</td>
<td>3.14 ab</td>
<td>3.22 a</td>
</tr>
<tr>
<td>pH</td>
<td>3.49 a</td>
<td>3.46 b</td>
<td>3.42 c</td>
<td>3.35 d</td>
<td>3.32 d</td>
</tr>
<tr>
<td>Acidity</td>
<td>0.51 d</td>
<td>0.56 c</td>
<td>0.61 b</td>
<td>0.68 a</td>
<td>0.71 a</td>
</tr>
<tr>
<td>Brix acid ratio</td>
<td>5.96 a</td>
<td>5.56 ab</td>
<td>4.87 bc</td>
<td>4.50 c</td>
<td>4.42 c</td>
</tr>
<tr>
<td>RS</td>
<td>0.69 e</td>
<td>0.80 d</td>
<td>0.94 c</td>
<td>1.04 b</td>
<td>1.20 a</td>
</tr>
<tr>
<td>NRS</td>
<td>1.77 a</td>
<td>1.71 a</td>
<td>1.64 ab</td>
<td>1.57 bc</td>
<td>1.46 c</td>
</tr>
<tr>
<td>AA</td>
<td>40.3 a</td>
<td>29.8 b</td>
<td>25.4 c</td>
<td>19.3 d</td>
<td>13.8 e</td>
</tr>
</tbody>
</table>

TSS (Total soluble solids); RS (Reducing sugars); NRS (Non reducing sugars); AA (Ascorbic acid)

Means carrying similar letters in a column do not differ significantly (p<0.05)

Color

The effect of treatments on color of diet drink is depicted in Figure 1. T₁ was ranked highest for color score this was followed by T₉ and T₁₀. These treatments shared nonsignificant difference with control samples. T₁₄ was ranked lowest as regard to its color characteristics. Storage had a significant effect on color perception of diet drink. The maximum scores for color were observed when it was freshly prepared. As the storage period increased, a slight decline in color score was experienced (Figure 2). The gradual loss in color over the entire storage period was due to action of acid present in the drink. Previous studies by Muhammad et al., (1987) also reported similar loss in color during storage of beverage samples.

Flavor

Flavor of the diet drink was affected significantly by treatments (Figure 1). T₁₄ got the maximum score for flavor. While lower flavor perception was recorded in T₇ in which aspartame and acesulfame k was added in 3:1. T₁, T₄, T₅, T₆ shared non significant difference with control. A significant variation was observed in flavor
perception of diet beverage at various storage levels. The maximum scores for flavor were observed when it was freshly prepared. As the storage period increased, a slight decline in flavor score was experienced (Figure 2). The gradual loss in flavor scores over the entire storage period was due to changes in volatile compounds of the drink. Flavor deterioration in beverage products was also reported by Jain et al. (2003), Bezman (2001).

A significant variation was observed in taste of diet beverage at various storage levels. The maximum scores for taste were observed when it was freshly prepared. As the storage period increased, a slight decline in taste score was experienced (Figure 2). The gradual loss in flavor scores over the entire storage period was due to changes in volatile compounds of the drink (Marcy et al., 1984). The taste difference and loss might be due to time and temperature, and duration of storage. Similar findings were also reported by Jain et al., (2003).

CONCLUSION

It can be concluded from this study that, the non-nutritive sweeteners can be effectively used as alternative source of sweetness in mandarin drink. Some changes in physiochemical characteristics were observed but these changes did not affect the product considerably. All of the sensory parameters decline slightly during storage but remain in acceptable region even after 60 days of storage.
REFERENCES


Preparation of mandarin diet drink


